
快速運用人工智慧技術 高通傾向以CPU、GPU等 軟硬協同學習框架 達成更高機器學習運算
並非Qualcomm不重視以獨立學習運算元件達成加速效果的優勢,而是考量其背後所面臨風險,因此將發展重心放在以軟體、學習框架驅動既有硬體的人工智慧應用模式,藉此擁抱更具彈性的人工智慧技術佈署。 相比華為、蘋果與聯發科對於端點學習運算加速的想法不同,雖然Qualcomm認為採用獨立學習運算元件提高效率的作法也很重要,但目前主要還是著重於以既有CPU、GPU與其他運算元件,配合軟體與學習框架達成等同,甚至更高的機器學習運算能力,同時也較不受限於獨立運算元件版本能力限制,藉此能讓更多基於Snapdragon運算平台裝置均可快速佈署人工智慧應用。 在與Qualcomm人工智慧暨機器學習產品管理總監Ga
7 年前